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ABSTRACT

DNA nanotechnology exploits the programmable
specificity afforded by base-pairing to produce
self-assembling macromolecular objects of
custom shape. For building megadalton-scale DNA
nanostructures, a long ‘scaffold’ strand can be
employed to template the assembly of hundreds
of oligonucleotide ‘staple’ strands into a planar anti-
parallel array of cross-linked helices. We recently
adapted this ‘scaffolded DNA origami’ method to
producing 3D shapes formed as pleated layers
of double helices constrained to a honeycomb lat-
tice. However, completing the required design
steps can be cumbersome and time-consuming.
Here we present caDNAno, an open-source soft-
ware package with a graphical user interface that
aids in the design of DNA sequences for folding 3D
honeycomb-pleated shapes A series of rectangular-
block motifs were designed, assembled, and ana-
lyzed to identify a well-behaved motif that could
serve as a building block for future studies. The
use of caDNAno significantly reduces the effort
required to design 3D DNA-origami structures. The
software is available at http://cadnano.org/, along
with example designs and video tutorials demon-
strating their construction. The source code is
released under the MIT license.

INTRODUCTION

In 1982, Nadrian Seeman laid the theoretical framework
for the use of DNA as a nanoscale building material (1,2).
Subsequently, DNA has been used in the construction
of increasingly complex shapes and lattices (3–8). In
2006, Paul Rothemund introduced DNA origami, a ver-
satile method for constructing arbitrary 2D shapes and

patterns with dimensions of 100 nm in diameter and
6 nm spatial resolution (9). The method uses hundreds of
short oligonucleotide ‘staple’ strands to direct the folding
of a long, single ‘scaffold’ strand of DNA into a pro-
grammed arrangement.
Since its introduction, DNA origami has been used for

applications such as label-free RNA-hybridization probes
(10), seeds for algorithmic assembly (11,12), and liquid-
crystalline alignment media for NMR structure determi-
nation of membrane proteins (13). Toward increasing the
size of DNA-origami design space, we recently extended
DNA origami to construction of 3D shapes (14). While
implementing DNA-origami shapes, we found it useful to
develop computer-aided design (CAD) software to mini-
mize tedious and error-prone tasks; similar efforts have
been reported previously for oligonucleotide-based DNA
nanostructures (15) or for planar DNA origami similar to
Rothemund’s original designs (16).
Here we describe our open-source software package,

caDNAno, for use in the design of 3D DNA-origami
shapes constrained to a honeycomb framework (14). We
have used caDNAno to generate seven DNA-origami
designs of 3D rectangular blocks of varying cross-section
dimensions. Analysis of the folded blocks by agarose-gel
electrophoresis and negative-stain transmission electron
microscopy revealed that a block design specifying six-
helices-per-x-raster row yields the greatest fraction of
defect-free objects.

METHODS

Folding and purification of DNA-origami shapes

Each sample was prepared by combining 20 nM scaffold
(p7560 or p8064, derived fromM13mp18), 100 nM of each
staple oligonucleotide, buffer and salts including 5mM
Tris, 1mM EDTA (pH 7.9 at 208C), and 22mM MgCl2,
except for the 30-helix-per-x-raster block, which was
folded with 15mM MgCl2. Folding was carried out by
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rapid heat denaturation followed by slow cooling from 80
to 618C over 80min, then 60 to 248C over 173 h. Samples
were electrophoresed on 2% agarose gels (0.5� TBE,
11mM MgCl2, 0.5 mg/ml ethidium bromide) at 70V for
4 h in an ice-water bath. Leading monomer bands were
visualized with ultraviolet light, physically excised,
crushed with a pestle (17) and filtered through a cellu-
lose-acetate spin column for 3min at 15 000� g, 48C.

Negative stain electron microscopy

Purified samples were adsorbed for 5min onto glow-
discharged formvar- and carbon-coated copper grids,
stained for 1min with 2% uranyl formate, 25mM
NaOH, and visualized at 68 000� magnification with an
FEI Tecnai T12 BioTWIN operating at 120 kV.

Chemicals and supplies

Sigma: EDTA, 2xYT Microbial Medium. Fisher
Scientific: magnesium chloride, polyethylene glycol 8000
(PEG8000), sodium chloride (NaCl), Tris base, sodium
hydroxide, potassium acetate, lauryl sulfate, glacial
acetic acid. BD: LB broth, Bacto agar. Molecular
BioProducts: 8-well PCR strip tubes. Invitrogen: agarose.
Bio-Rad: Freeze ‘N Squeeze DNA gel-extraction spin col-
umns. Kimble-Chase: pellet pestles. SPI: carbon/formvar
copper grids, uranyl formate. Bioneer: RPC-purified
deoxyribonucleotides.

Recombinant M13 filamentous bacteriophage construction

Recombinant phages were prepared by replacement of the
BamHI-XbaI segment of M13mp18 by a PCR amplifica-
tion fragment from a previously generated random
sequence (18). Double-stranded (replicative form) bacter-
iophage M13 DNA bearing inserts were prepared as
described (13). The inserts were verified by a double-
restriction digest with BamHI and XbaI, followed by
sequencing. The design: scaffold pairings are as follows:
i: p8064, ii: p7560, iii: p8064, iv: p7560, v: p8064, vi: p7560,
vii: p7560.

Gel-based yield estimation

ImageJ (http://rsb.info.nih.gov/ij/) was used for gel-image
analysis. The percentage of scaffold that partitioned as
a monomeric species was estimated as the background-
subtracted integrated intensity value of a selection box
enclosing the leading band of each lane divided by the
background-subtracted integrated intensity value of a
selection box enclosing the material from the well, down
to the bottom of the leading band.

RESULTS AND DISCUSSION

In a fully occupied honeycomb lattice, each staple helix
has three nearest neighbors (e.g. helices 1, 3, 7, 8, 9, 10, 14,
16 in Figure 1). Our default rules allow antiparallel
crossovers between adjacent staple helices only where
the strand backbones arrive at points of closest pro-
ximity, which repeat every 21 base pairs if the helical
twist is fixed at 10.5 base pairs per turn. Thus for a

given staple helix, potential staple-crossover positions
occur every seven base pairs, or two-thirds of a turn.
Our default rules allow antiparallel crossovers between
adjacent scaffold helices to occur five base pairs, or half
a turn, upstream or downstream of allowed crossover
positions for the associated staple helices. However,
caDNAno permits the user to force crossovers between
any two staple bases or between any two scaffold bases.
Users should take care when forcing crossovers, as depar-
ture from the default rules may lead to folding failure if
too much deviation from canonical DNA geometry is
implied.

The design process has four main steps. First, a target
shape is approximated by selecting a raster-style scaffold
path that passes between neighboring helices along anti-
parallel crossovers at allowed positions. Second, staple
paths complementary to scaffold are assigned. By default,
all permitted staple crossovers are included, except for
those that would be five base pairs away from a scaffold
crossover between the same two helices. Third, the staple
paths are broken into shorter segments 18 to 49 bases
long, usually with a mean length of 30 to 35 bases.
Finally, the scaffold path is populated with the DNA
sequence of the desired template (e.g. 7–8 kb M13-
genome-based vector), and the complementary staple
sequences are determined.

This design pipeline is integrated from start to finish in
the caDNAno three-panel interface (Figure 1a). The z-axis
is defined as parallel to the helical axes. The Slice panel
(orange border) provides an x–y cross-section view of the
honeycomb helix lattice for any z-depth, with helices
represented as circles. When the user clicks on an empty
circle, that helix position is made available for routing of
scaffold and staple strands by adding a schematic side
view of the same helix to the Path panel (blue border).
The Path panel is used for nucleotide-level editing of
scaffold- and staple-path connectivity, assigning DNA
sequences to scaffold paths, and reading out of staple
DNA sequences. The Render panel (grey border) provides
a real-time, 3D cylinder model for visualizing the shape
as it is constructed. In each panel, pan and zoom tool
buttons allow the user to view or edit the shape at different
positions and magnifications. The Slice and Path panels
have specialized tools for making additions, edits, rearran-
gements or deletions to a design (detailed descriptions of
the tool buttons are found in the Supplementary Note 1).
Completion of the design pipeline results in a list of staple
DNA sequences corresponding to the schematics shown
in each panel; the result also can be represented as a
detailed SVG schematic (Figure 1b).

The process of approximating a 3D shape with a scaf-
fold path begins with selection of helices in the Slice panel
to approximate a 2D projection of that shape. When a
helix is added to the design in the Slice panel, the same
helix also is made active in the Path panel and is populated
with a three-base-long scaffold path by default. Thus,
once the desired helices are added to the design via the
Slice panel (Figure 1a, orange panel), several short, dis-
connected scaffold paths are visible in the Path panel
(Figure 1c). The Path-panel editing tools are used to
extend the scaffold paths in the z-direction and to connect
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neighboring helices with Holliday-junction crossovers.
The goal is to complete a continuous raster-style traversal
of the target shape using a scaffold path (Figure 1d).

Once the scaffold path is complete, complementary
staple paths are assigned by clicking the ‘Auto-staple’
tool button beneath the Path panel. Staple paths are
created wherever scaffold is present, according to an
algorithm that follows the aforementioned rules for cross-
over spacing (Figure 1e). Staple paths that fall outside the
preferred length range (18–49 bases) are highlighted, and
the user is responsible for using the editing tools to break
the staple paths into shorter segments. After all staples are
edited into a satisfactory arrangement, the scaffold path is
populated with a DNA sequence using the ‘Add Sequence’
tool. Several default sequences are provided, or the user
can input his or her own. Additionally, a 3D model can be
exported in X3D format, with double helices represented
as cylinders of 2 nm diameter and 0.34 nm per base-pair
length (Figure 1f).

We used caDNAno to design seven different honey-
comb-pleated-origami rectangular blocks (Figure 2a, top

row), creating a simple scaffold-path trajectory that
followed the same approximate path through each struc-
ture: as viewed down the helical axes, close-packing rows
of helices were arrayed within the honeycomb framework
in an x-raster pattern (i.e. left to right, then down, then
right to left, then down, etc.); the connectivity of neigh-
boring scaffold helices is more apparent in partially folded
cylinder models (Figure 2b, top row). The x-raster rows
within the honeycomb framework are corrugated;
they stagger up and down and encompass helices that
are actually at two different y-positions. Similarly, virtual
y-oriented layers can be defined that stagger left and right
and encompass helices that are at two different x-posi-
tions. The shapes were folded either from a 7560-base
scaffold into 60 parallel helices or from an 8064-base scaf-
fold into 64 parallel helices to create number-of-rows
versus number-of-helices-per-x-raster-row combinations
of 15� 4, 10� 6 (analyzed independently in ref. 14),
8� 8, 6� 10, 4� 16, 3� 20, 2� 30. Each helix was allot-
ted 126 bases of scaffold. Of those 126 bases, 98 were
paired with complementary staples, and the remaining

Figure 1. caDNAno Interface and design pipeline. (a) Screenshot of caDNAno interface. Left, Slice panel displays a cross-sectional view of the
honeycomb lattice where helices can be added to the design. Middle, Path panel provides an interface to edit an unrolled 2D schematic of the scaffold
and staple paths. Right, Render panel provides a real-time 3D model of the design. (b) Exported SVG schematic of example design from a, with
scaffold (blue) and staple (multi-color) sequences. (c) Path panel snapshot during first step of the design process. Short stretches of scaffold are
inserted into the Path panel as helices are added via the Slice panel. (d) The Path panel editing tools are used to stitch together a continuous scaffold
path. (e) The auto-staple button is used to generate a default set of continuous staple paths, including crossovers. The breakpoint tool is subsequently
used to split the staple paths into lengths between 18 and 49 bases. Finally, the scaffold sequence is applied to generate the list of staple sequences.
(f) Exported X3D model from the Render panel.
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Figure 2. Transmission electron microscopy (TEM) and agarose-gel analysis of DNA-origami blocks. The nomenclature of the designs is m� n,
where m is the number of x-raster rows, and n is the number of helices per x-raster row. (i), 15� 4 motif; (ii) 10� 6 motif; (iii) 8� 8 motif; (iv) 6� 10
motif; (v) 4� 16 motif; (vi) 3� 20 motif; (vii) 2� 30 motif. (a) Cylinder-model projections and transmission-electron micrographs for rectangular-
block designs. (b) Partially folded models, which do not represent the actual folding pathway, are displayed above fully folded models. Scaffold
crossovers only occur between helices that are neighbors in the partially folded models. Thus, these models capture an important feature of the
design: the path of the scaffold stays within a 2D surface. (c) Agarose-gel analysis of folding of blocks. Marker is a 1 kb ladder. Red boxes indicate
the region of each lane that was counted as the fastest-migrating monomeric species for yield estimates in option d and that was physically extracted
from the gel during purification before TEM imaging. The 6� 10 design displays the fastest gel mobility. (d) Fraction of scaffold incorporated into
fastest-migrating monomeric species, as estimated by ethidium-bromide-fluorescence intensity. (e) Fraction of well-folded species after gel purifica-
tion, as estimated by image analysis of 100 randomly selected particles for each shape. Scale bars: 25 nm.
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28 bases were divided into front and rear unpaired loop
fragments at the ends of each helix (detailed schematics
and staple lists are included in Supplementary Notes 2
and 3, respectively).

Each of the shapes was folded in separate chambers by
heat denaturation followed by cooling for renaturation,
and analyzed by agarose-gel electrophoresis (Figure 2c).
The seven shapes varied significantly in leading band yield,
mobility, and sharpness, as well as amount of undesired
formation of higher-order aggregates. We estimated fold-
ing yields as integrated intensity of material that migrated
as a leading band divided by total intensity of material in
the lane up to and including the well (Figure 2d). Material
in each of the leading bands was isolated by physical
extraction and analyzed by negative-stain transmission
electron microscopy (Figure 2a). For each shape, 100 ran-
domly selected individual-particle images were collected,
and folding yields were estimated (Figure 2e). A particle
was judged to be well-folded if its outline could be aligned
with a semi-transparent projection model of the corre-
sponding design and it exhibited no obvious defects
such as missing, broken, disrupted, or smeared out sec-
tions more than 3 nm away from the unpaired scaffold
loops at the front and rear interfaces. For example, of
the five particle images shown for the 4� 16 design in
Figure 2a(v), only the topmost particle was counted as
well-folded.

Only folding with three of the seven designs—four-
helix-per-x-raster or 15� 4 (two y-layers), six-helix-
per-x-raster or 10� 6 (three y-layers), thirty-helix-per-
x-raster or 2� 30 (two x-layers)—produced sharp leading
monomer bands by agarose-gel electrophoresis
(Figure 2c). Thus designs with a smaller number of
x-layers or y-layers may have a folding advantage due to
fewer numbers of highly embedded helices, which may be
more difficult to assemble, and perhaps also due to the
lower crossover densities. Consistent with this trend,
single-layer shapes fold much faster and to higher yield
(9). Folding with the six-helix-per-x-raster (10� 6)
design produced the leading band with the greatest mobi-
lity, while folding with the four-helix-per-x-raster (15� 4)
design produced the leading band with the greatest inten-
sity, indicating the best yield. Our previous results sug-
gested that faster gel mobility of the same design under
different folding conditions correlates with fewer defects
(14), although it is more difficult to interpret mobility dif-
ferences across designs with inherently different shapes.

The six-helix-per-x-raster (10� 6) shape appeared the
most robust of the seven designs in terms of yielding par-
ticles that are intact after folding, staining, and drying
(Figure 2e). We also have found that this six-helix-x-
raster design performs well when used to construct
shapes with as few as three x-raster rows (i.e. 18 helices
total) and longer lengths of helices (data not shown).
Interestingly, the 15� 4 and 2� 30 designs produced par-
ticles that appeared bent when adhering to the grid surface
with a perpendicular orientation of the helical axes; it is
possible that the positively charged stain is deforming
these particles, but that the other designs produce particles
that are sufficiently thick to resist such deformation.
Thinner objects such as the 15� 4 and 2� 30 designs

might be suitable for some applications if a staining arti-
fact is the cause of the observed deformations. Further
studies will be necessary for optimizing design parameters
that might affect folding yield, such as staple-break-point
distribution, scaffold routing, and scaffold- versus staple-
crossover densities (19).
The construction of complex, 3D DNA nanostructures

will increase the range of applications that can be
addressed, but also will add complexity to the design pro-
cess. By restricting design space to the honeycomb-lattice
framework, we reduce the number of choices that need to
be made when implementing a 3D DNA-origami shape
while retaining a significant amount of flexibility. Our
caDNAno software package relieves the user from com-
pleting the tedious conversion of a creative design to oligo-
nucleotide sequences. We have found that caDNAno
performs favorably when compared to ad hoc methods
for generating staple sequences for a new shape design,
typically reducing the time required for monotonous
sequence assignment from days or weeks down to a few
hours.
In addition to supporting the design of basic shapes

such as rectangular blocks, caDNAno provides tools to
introduce deviations from the basic honeycomb architec-
ture, such as forced crossovers, to create very complicated
designs. Additional software development will be required
to make designs of these non-standard motifs more nat-
ural, for example for caDNAno to predict the structural
consequences of these changes. More work is also needed
to see what design rules lead to stable structures; for
examples of designs that folded successfully, although
with varying yields, see the gallery section at http://
cadnano.org/.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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